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Outline

• Inheritance

•extends

•super

• Method overriding

• Automatically-generated constructors
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extends
States that a subclass inherits from a parent class

public class Mammal {
...

}

public class Cat extends Mammal {
...

}

public class Dog extends Mammal {
...

}
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super
Used to invoke the constructor of the parent class.  
Another name for the parent class is the superclass.

public class BaseClass {
public BaseClass(String s) {...}

}

public class Child extends BaseClass {  
public Child(String s) {
super(s);

}
}



Example

•Mammal.java

•Cat.java

•Dog.java

•MammalMain.java
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toString() Revisit
public String toString() {
...

}

Rectangle(3, 4)  

Rectangle@302b09c9

Key point: even withouttoString()defined,  
a String was still produced.
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Base toString() Origin
• All classes inherit from Object,

even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

public class Object {
public String toString() { ... }

}

public class Rectangle { ... }  

public class Rectangle extends Object {
...

}
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Overriding Methods
• You can override a method definition in a base class by

defining a method with the same signature in a
subclass

• The method in the subclasswill execute instead of the
method in the parent class

public class Rectangle {  
public String toString()

{
...

}
}



Overriding Methods

• You can override a method definition in a base class
by defining a method with the same signature in a
subclass

• The method in the subclass will execute instead of the
method in the parent class

public class Rectangle extends Object {  
public String toString() {

...
}

}



Example

•OverrideBase.java

•OverrideSub.java

•OverrideMain.java
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Automatic Constructors
If you don’t define any constructors,

Java will define one for you which takes no arguments.

public
}

class MyClass {

public class MyClass {
public MyClass() {}

}



Example:
AutomaticConstructor.java
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Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument constructor

public class MyBase {}  
public class MySub extends MyBase {}

public class MyBase {  
public MyBase() {}

}

public class MySub extends MyBase {
public MySub() { super(); }

}
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Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument  
constructor

public class MyBase {
// explicit non-no-arg constructor
// defined - no automatically
// generated constructors  
public MyBase(int x) {}

}
public class MySub extends MyBase {  

public MySub() { super(); }
}

Does not exist - code will not compile


