
COMP 110/L Lecture 19
Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Outline

• Inheritance

•extends

•super

• Method overriding

• Automatically-generated constructors

Inheritance

Recap

Mammal

Mammal

Mammal

Mammal

breathe

breathe

Mammal

Inheritance

Mammal

Inheritance

breathe

extends

extends
States that a subclass inherits from a parent class

extends
States that a subclass inherits from a parent class

public class Mammal {
...

}

extends
States that a subclass inherits from a parent class

public class Mammal {
...

}

public class Cat extends Mammal {
...

}

extends
States that a subclass inherits from a parent class

public class Mammal {
...

}

public class Cat extends Mammal {
...

}

public class Dog extends Mammal {
...

}

super

super
Used to invoke the constructor of the parent class.
Another name for the parent class is the superclass.

super
Used to invoke the constructor of the parent class.
Another name for the parent class is the superclass.

public class BaseClass {
public BaseClass(String s) {...}

}

super
Used to invoke the constructor of the parent class.
Another name for the parent class is the superclass.

public class BaseClass {
public BaseClass(String s) {...}

}

public class Child extends BaseClass {
public Child(String s) {
super(s);

}
}

Example

•Mammal.java

•Cat.java

•Dog.java

•MammalMain.java

Method Overriding

toString() Revisit

toString() Revisit
public String toString() {
...

}

toString() Revisit
public String toString() {
...

}

Rectangle(3, 4)

toString() Revisit
public String toString() {
...

}

Rectangle(3, 4)

Rectangle@302b09c9

toString() Revisit
public String toString() {
...

}

Rectangle(3, 4)

Rectangle@302b09c9

Key point: even withouttoString()defined,
a String was still produced.

Base toString() Origin
• All classes inherit from Object,

even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

Base toString() Origin
• All classes inherit from Object,

even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

public class Object {
public String toString() { ... }

}

Base toString() Origin
• All classes inherit from Object,

even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

public class Object {
public String toString() { ... }

}

public class Rectangle { ... }

Base toString() Origin
• All classes inherit from Object,

even if you don’t explicitly say so

• Object defines its own toString()
that produces Rectangle@302b09c9

public class Object {
public String toString() { ... }

}

public class Rectangle { ... }

public class Rectangle extends Object {
...

}

Overriding Methods

• You can override a method definition in a
base class by defining a method with the
same signature in a subclass

• The method in the subclass will execute
instead of the method in the parent class

Overriding Methods
• You can override a method definition in a base class by

defining a method with the same signature in a
subclass

• The method in the subclasswill execute instead of the
method in the parent class

public class Rectangle {
public String toString()

{
...

}
}

Overriding Methods

• You can override a method definition in a base class
by defining a method with the same signature in a
subclass

• The method in the subclass will execute instead of the
method in the parent class

public class Rectangle extends Object {
public String toString() {

...
}

}

Example

•OverrideBase.java

•OverrideSub.java

•OverrideMain.java

Automatically-
Generated

Constructors

Automatic Constructors
If you don’t define any constructors,

Java will define one for you which takes no arguments.

Automatic Constructors
If you don’t define any constructors,

Java will define one for you which takes no arguments.

public class MyClass {
}

Automatic Constructors
If you don’t define any constructors,

Java will define one for you which takes no arguments.

public
}

class MyClass {

public class MyClass {
public MyClass() {}

}

Example:
AutomaticConstructor.java

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument constructor

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument constructor

public class MyBase {}
public class MySub extends MyBase {}

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument constructor

public class MyBase {}
public class MySub extends MyBase {}

public class MyBase {
public MyBase() {}

}

public class MySub extends MyBase {
public MySub() { super(); }

}

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument
constructor

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument
constructor

public class MyBase {
// explicit non-no-arg constructor
// defined - no automatically
// generated constructors
public MyBase(int x) {}

}
public class MySub extends MyBase {}

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument
constructor

public class MyBase {
// explicit non-no-arg constructor
// defined - no automatically
// generated constructors
public MyBase(int x) {}

}
public class MySub extends MyBase {

public MySub() { super(); }
}

Automatic Constructors
This also applies to subclasses,

as long as the base class has a no-argument
constructor

public class MyBase {
// explicit non-no-arg constructor
// defined - no automatically
// generated constructors
public MyBase(int x) {}

}
public class MySub extends MyBase {

public MySub() { super(); }
}

Does not exist - code will not compile

